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Text, aim, theory and motivation

Literary texts convey meaning on two levels:
1 explicit content (linguistic form),
2 implicit subtext (world knowledge and context, Gricean inference).

Aim: Quantify subtextual effects in Anton Chekhov’s story Ward No. 6.
Theory: Information-theoretic analysis using Surprisal and Information Density.
Motivation: Subtext effects are to be demonstrated mathematically.

Anton Chekhov and the story Palata No 6

• Chekhov’s short stories are known for containing a lot of subtext.
• Chekhov’s style is marked by brevity and a minimalist use of figurative language, inviting

an interpretive effort, making his prose ideal for subtext analysis.
• Palata No 6 is a relatively long story (186 paragraphs and 8398 tokens),
• our study is based on the original Russian version.

Hypotheses

To identify the subtextual structure, we enrich the Russian original with glosses, thus modelling
implicit content explicitly.
H1: Adding meaningful glosses to the original text reduces surprisal and leads to a

well-balanced flow of information,
H2: Adding fake glosses to the original text leads to greater surprisal fluctuations.

Information indices

Surprisal: Reflects information conveyed by a word in a given context. Surprisal s of a word w
depends on its conditional probability in a given context:

s(wi) = − log2 P (wi | w1, . . . , wi−1, CONTEXT)
Where w<i represents co-occurrences, and CONTEXT extra-sentential context that,
in this study, is defined as semantic topics, from which semantic surprisal is derived.

Uniform Information Density (UID): wordwise operationalisation of UID.

UID = − 1
n − 1

n∑
i=2

(I(wi) − I(wi−1))2

Information Density and the UID principle represents the Flow of Information in sentences.
A uneven flow of information in the sentence (extreme information troughs and peaks) can lead
to high cognitive processing effort.

The study

Information models:
M1: LLaMA 3.2B (incremental LLM-based surprisal)
M2: TCM (Topic Context Model) (topic-based Bag of Words-surprisal)

Enrichment types:
• no glosses, original text only (OT)
• meaningful glosses (MG)

• NLP-based (BabelNet glosses)
• LLM-based (Bison, Gemini)

• Fake glosses (FG)
• Random sentences from Russian news corpus

Experimental setup:
• 8 conditions: combinations of OT, MG (LLM-enrichment & NLP enrichment), FG

with M1 and M2,
• UID distributions computed per sentence,
• comparison across models and enrichment types.

Results

M1 (Llama): shows near-normal UID distributions. MG and fake glosses improve UID
compared to OT. H1 is confirmed for both.

M2 (TCM) : yields peaked, skewed distributions across all conditions. Both MG and fake
glosses perform worse than OT. H2 is confirmed. H1 is not.

Gemini + M1: UID improves slightly over OT, positioned between OT and fake glosses.
Bison + M2: UID for MG lies between OT and fake glosses, contradicting H2.
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Figure: Density plots from UID-distributions.

Conclusion

Under the experimental conditions both with NLP and Bison-glossing and employing M2, our
hypotheses could not be confirmed at the same time: H2 turned out to be true, while H1 did not.
Meaningful and fake enrichments could be distinguished from OT through UID-distributions,
however, both fake-glossing and MG had a lower density of UID than OT.

• Our attempt at adding explicitised subtext does not achieve its intended goal,
• a subtext effect exists but it is overshadowed by the enrichment effect due to (i) a

inadequate experimental setup, or (ii) a information density as an adequate measure for
quantifying subtext effect.


